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Abstract. We comment on the set of visible points of a lattice and its Fourier transform, thus 
continuing and generalizing previous work by Schrwder and Mossen. A closed formula in 
terms of Dirichlet series is oMained for the Bragg part of the Fourier m s f o r m .  We compare 
this calculation with the outcome of an optical Fourier transform of the visible points of the 2D 
square lattice. 

Recently, Mosseri has given a nice and elegant description of the set of visible points of 
a lattice (i.e. those points except the origin that connect to the origin via a straight line 
without hitting any other lattice point in between) and some of its properties [2], continuing 
previous work by Schroeder [I, 31. Both authors are most interested in the Fourier transform 
of this set. Unfortunately, the results of these two attempts are contradictory. The algebraic 
approach of [Z] is essentially correct, but contains a couple of mistakes and unnecessary 
restrictions. In what follows, we add several remarks to straighten this out and then compare 
the 2D case with an optical experiment. 

Let A = Zbl@' .@Zb. be a lattice in IZD space with linearly independent basis vectors 
bl ,  . . . , bo. The set FA of visible points [2-4] can be characterized as 

(1) 

where gcd denotes the greatest common divisor. This set does nor include the origin with 
respect to which it is defined. We follow [2] for the notation as far as possible. 

The set FA is non-periodic and is left invariant by the group of lattice automorphisms, 
Aut(A), which is isomorphic to Gl(n, Z), the group of integer n x n matrices with 
determinant & I ,  This is seen from M E Aut(A) transforming fundamental cells of the 
lattice to other fundamental cells and hence visible points to visible points [4, 61. As a 
consequence, the set of visible points admits precisely the same point symmetry as the 
lattice A itself, the bansformations are not restricted to pure rotations. This can clearly be 
seen from figure 1 which shows the case of the square lattice. 

How frequent are visible points? If p denotes the probability of a lattice point to be 
visible (defined through a volume limit which exists, compare ch. 3.8 of [7]),  we also have 
(e E N = [ I ,  2 , 3 , .  . .]) the probabilities 

FA = {mtbr + . I  .+m.b. I gcd(m1. .. . , m n )  = 1) 

P P ( x  E &F*) = - 
en 
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Figure 1. Some visible points or the 2D square I d c e .  

which is the correct version of (1) in [2]. Note that (3) is the union of pairwise disjoint 
sets? which will be essential in what follows. 

The single point 0, however, does not matter in the calculation of the probabilities 
wherefore we get 

We can thus write p by means of Riemann’s (-function as 

where P denotes the set of primes [4, 51. Obviously, p = 0 for n = I (precisely two 
points are visible here), and p rapidly approaches 1 with increasing n ,  compare figure 2. 
For even n 2 2, the (-function is known to be transcendental [8, 91 (and thus irrational) 
through ((2m) = ((Zrc)”/2(2m)!)IBu,I, where B h  are the Bernoulli numbers, compare 
[8]. Also, ((3) is irrational [lo], while this question is open for odd n > 3. Note that the 
non-periodicity of FA follows from the irrationality of p, but not vice versa. 

A different approach uses the third Mobius inversion formula [3, 41 where one starts 
from the characteristic function hr of a set r, which is one for points of the set and zero 
otherwise, and rewrites (3) as 

t This pmpeny would be destmyed by the (unconventional) addition of the origin Io the set FA. 
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Figure 2. Relative frequency of visible points in a lattice as a function of the dimension. 

Convergence is no problem because, for any given point, the right-hand side is a finite sum. 
Now, using the inversion formula for such series [4] one obtains 

with the Mobius function ~ ( t ) ,  cf. [4]. Note the differences to (1)43) in [2] which result 
from a small mistake in the description of the lattice A. It is important though because 
I r,"=, p(!)l does not converge: it  is not bounded by N'12 [3, 111. 

This indicates that the calculation of the Fourier transform requires some care: it is not 
clear that the set of visible points is strictly almost periodic in the sense that the Fourier 
transform need not be a sum over &distributions (or Bragg peaks) only. In fact, for n = 1, 
this diffractive part vanishes due to the existence of only two visible points and the Fourier 
transform is 2cos(kx) and thus continuous. This limit must nevertheless be covered by the 
correct treatment. In [Z], this is hidden by an infinite normalization factor-the formula 
would give vanishing Fourier transform for n = 1. 

Let us now consider the so-called structure factor in more detail. The structure factor 
Sr of a discrete set r is the Fourier transform of &scatterers of equal strength on all points 
of r, i.e. 

If r has inversion symmetry (as A and FA do), we can also write Sr(k) = xxer&kx = 
Exer cos(kx). Now, with (7), we find 

to be understood in the distribution sense. Nevertheless, due to lack of convergence, an 
interchange of the sums is a subtle business. Though a complete treatment is desirable 
here, it is far beyond the scope of this comment and therefore left to a forthcoming 
publication [12]. But in the spirit of 121, one can indeed extract the point-like contributions, 
henceforth called Bragg peaks (though we are talking about amplitudes rather than intensities 
here) because other contributions are arbitrarily small in comparison to the 8-peaks in the 
thermodynamic Limit. 
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Before we continue, let us remark that the Structure factor S,rA(k) is periodic in k WRT 
the reciprocal lattice A*: we can alternatively write 

SFn ( k )  = 1 6(x' - X )  . hFn (x')e-iPx'dr' (10) 
I E h  

with the characteristic function hF, defined above. But then, sFA(k)  is the convolution of 
SA(k)-which is periodic !-with the Fourier transform of the characteristic function hrA. 
Consequently, S, (k )  itself is periodic. Furthermore, since the set FA of visible points is 
invariant under Aut(A), the corresponding property applies to its Fourier transform, which is 
thus invariant under Aut(2zA*)-the latter again being isomorphic with the group Gl(n,  Z). 
These two arguments apply to the full structure factor (and also to n = I), not only to its 
Bragg peaks. 

To describe the latter, we now consider the reciprocal lattice 2nA' with A' = 
( y  I x . y  E Z V X  E A} = Zb; + ' . '  + Zb;, bf 'b j  = S t j .  A Bragg peak sits on every 
k = 2n(rlbf+. I .+r,,b;) with rationalcoefficients, i.e. ri E Q. If we write ri = pi/qi  with 
coprime integers pi, qi (where we take qi > 0 for convenience), the peaks have strength 
H = H ( q l .  ..., q,), 

relative to the Bragg peaks of the lattice A. Here, Icm denotes the least common multiple. 
In particular. qj = . . . = qn = I gives 

which is again the frequency of visible points, while H is zero unless all arguments are 
squate free, because the Mobius function vanishes for numbers that are divisible by a 
square. This explains the 'dark' lines in the diagram of intensities (i.e. lines without 
spots-hence 'white' in figure 3 while really dark in figure 4) which are given-in kinematic 
approximation-by the absolute squares of the amplitudes (1 1). 

Equation (1 1) gives a closed formula for the amplitudes of the Bragg peaks in form of 
an infinite sum, but can still be simplified considerably. If we consider 

for e, a E N, we can use standard techniques from the treatment of Dirichlet series, compare 
[51, to evaluate the sum. If a = PI . . . . pr  is the product of pairwise distinct primes, one 
can easily show by induction that 

and hence, with the multiplicativity of the Mobius function and (13). 

Inserting this into (1 1) finally gives, with a = Icm(q1 . . . , q-), the amplitude function 
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Figure 3. Bragg pm of the Fourier transform for the ease of the square lattice according to (16). 
Here, the radius of the dots representing the Bragg peaks are proportional to the amplitude. 

Figure 4. Optical Fourier transform of some 90W visible points 
of the square lanice Z’. see text for details. 

This way, the calculation of the amplitudes relative to the central amplitude is reduced to 
the evaluation of a finite product, compare figure 3 for the ZD example of the square lattice. 
There, a Bragg peak is represented by a dot with radius proportional to the amplitude (i.e. 
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the area is proportional to the intensity). 
The Fourier transform is periodic, although the set itself obviously is not-it is not even 

quasiperiodic because the Fourier module (i.e. the Z-module generated by the positions of 
the &peaks) is only countably but not finitely generated. The key structure is thus contained 
in one fundamental domain of the reciprocal lattice. This is indeed clearly seen in figures 3 
and 4. The latter was obtained by optical Fourier transform of a finite portion of Fz1 on an 
optical bench. Here, we used some 9000 points of radius 15% of the lattice constant. They 
were prepared as a negative slide made from 24x36 mm2 documentary film. The light was 
extracted from a laser beam, widened by a high quality lens to a parallel beam covering the 
entire slide. Although the image is not perfect (one should not expect rapid convergence in 
view of the remarks after (9)) and still shows some standard optical errors, it is nevertheless 
amazing how clear the structure with the subtle invariance properties is recovered. It is 
correctly described by the approach via the Mobius transform while previous numerical 
attempts [ I ]  seem to fail for reasons we were not able to unravel. 

Of course, one can now deal with generalizations like the set of points visible to two 
or more observers which resembles the above situation in many respects, although the 
relative position of the observers does play a significant role. Unfortunately, we could not 
find similarly nice closed expressions for the Fourier transform wherefore we drop further 
details here. 
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